题目内容
(10分)抛物线上有两点且(0为坐标原点)(1)求证:∥ (2)若,求AB所在直线方程。
(1)证明:见解析;(2) AB的方程为
解析
(12分)已知点的坐标分别为,直线相交于点,且它们的斜率之积是,试讨论点的轨迹是什么。
(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线、.(1)求抛物线对应的二次函数的解析式;(2)求证:以ON为直径的圆与直线相切;(3)求线段MN的长(用表示),并证明M、N两点到直线的距离之和等于线段MN的长.
在直角坐标系上取两个定点,再取两个动点,且.(Ⅰ)求直线与交点的轨迹的方程;(Ⅱ)已知点()是轨迹上的定点,是轨迹上的两个动点,如果直线的斜率与直线的斜率满足,试探究直线的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.
在平面直角坐标系中,椭圆为(1)若一直线与椭圆交于两不同点,且线段恰以点为中点,求直线的方程;(2)若过点的直线(非轴)与椭圆相交于两个不同点试问在轴上是否存在定点,使恒为定值?若存在,求出点的坐标及实数的值;若不存在,请说明理由.
(本题分12分)如图,斜率为1的直线过抛物线的焦点,与抛物线交于两点A、B, 将直线按向量平移得到直线,为上的动点,为抛物线弧上的动点.(Ⅰ) 若 ,求抛物线方程.(Ⅱ)求的最大值.(Ⅲ)求的最小值.
直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点形成轨迹.(1)求轨迹的方程;(2)若直线与曲线交于两点,为曲线上一动点,求面积的最大值
如图,曲线是以原点O为中心、为焦点的椭圆的一部分,曲线是以O为顶点、为焦点的抛物线的一部分,A是曲线和的交点且为钝角. (1)求曲线和的方程;(2)过作一条与轴不垂直的直线,分别与曲线依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问是否为定值?若是求出定值;若不是说明理由.