题目内容

已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求证:{an}是等差数列;
(2)设
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=Tn,求证Tn<2.
分析:(1)由点P(an,an+1)(n∈N+)在直线x-y+1=0上,知an-an+1+1=0,所以an是以公差d=1的等差数列.
(2)证明:Sn=
n(1+n)
2
1
Sn
=
2
n(1+n)
=2(
1
n
-
1
n+1
)
Tn=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=2(1-
1
n+1
) <2
解答:(1)证明:∵点P(an,an+1)(n∈N+)在直线x-y+1=0上,
∴an-an+1+1=0,即an+1-an=1,
∴an是以公差d=1的等差数列.
(2)证明:∵等差数列{an}中,a1=1,d=1,
Sn=
n(n+1)
2
1
Sn
=2(
1
n
-
1
n+1
)

Tn=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=2(1-
1
n+1
) <2
点评:本题考查数列的通项公式的求法和裂项求和法的灵活运用,解题时要认真思考,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网