题目内容
【题目】(12分)设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=12.
(1)求数列{an}的通项公式;
(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
【答案】(1);(2)
【解析】
试题(1)设出等比数列的公比,利用条件a1=2,a3﹣a2=12列方程组,求出公比的值,进而得到数列的通项公式;
(2)数列{an+bn}是由一个等差数列和一个等比数列对应项相加得来的,所以可以采用拆项分组的方法,转化为等差数列、等比数列的前n项和问题来解决.
试题解析:解:(1)设数列{an}的公比为q,由a1=2,a3﹣a2=12,
得:2q2﹣2q﹣12=0,即q2﹣q﹣6=0.
解得q=3或q=﹣2,
∵q>0,
∴q=﹣2不合题意,舍去,故q=3.
∴an=2×3n﹣1;
(2)∵数列{bn}是首项b1=1,公差d=2的等差数列,
∴bn=2n﹣1,
∴Sn=(a1+a2+ +an)+(b1+b2+ +bn)
=+
=3n﹣1+n2.
【题目】随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐,下表是西南地区某大学近五年的录取平均分与省一本线对比表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
省一本线 | 505 | 500 | 525 | 500 | 530 |
录取平均分533 | 534 | 566 | 547 | 580 | |
录取平均分与省一本线分差y | 28 | 34 | 41 | 47 | 50 |
(1)根据上表数据可知,y与t之间存在线性相关关系,求y关于t的线性回归方程;
(2)据以往数据可知,该大学每年的录取分数X服从正态分布,其中为当年该大学的录取平均分,假设2019年该省一本线为520分,李华2019年高考考了569分,他很喜欢这所大学,想第一志愿填报,请利用概率与统计知识,给李华一个合理的建议.(第一志愿录取可能性低于,则建议谨慎报考)
参考公式:,.
参考数据:,.
【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表.请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
附参考公式及数据:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |