题目内容
将函数的图象向右平移个单位,再把所有的点的横坐标缩短到原来的倍(纵坐标不变),得到函数的图象,则图象的一个对称中心为( )
A. B. C. D.
已知函数与,它们的图像有一个横坐标为的焦点,则 ( )
曲线(为参数)的离心率为( )
已知向量,,设.
(Ⅰ)若,求的值;
(Ⅱ)在中,角,,的对边分别是,,,且满足,求的取值范围.
设函数的导函数为,且满足,,则时,( )
A. 有极大值,无极小值 B. 有极小值,无极大值
C. 既有极大值又有极小值 D. 既无极大值也无极小值
已知函数.
(1)若曲线在点处的切线经过点,求的值;
(2)若在上存在极值,求的取值范围;
(3)当时,恒成立,求的取值范围.
我国古代数学家著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤,问本持金几何”其意思为“今有人持金出五关,第1关收税金,第2关收税金为剩余金的,第3关收税金为剩余税金的,第4关收税金为剩余金的,第5关收税金为剩余金的.5关所收税金之和,恰好重1斤,问原本持金多少?”若将题中“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为,按此规律通过第8关”,则第8关需收税金为__________ .
已知数列与满足,,,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,为数列的前项和,求.
已知函数为奇函数.
(1)求的值,并求函数的定义域;
(2)判断并证明函数的单调性;
(3)若对于任意,是否存在实数,使得不等式恒成立,若存在,求出实数的取值范围,若不存在,请说明理由.