题目内容
【题目】已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2﹣4x+3.
(1)求f[f(﹣1)]的值;
(2)求函数f(x)的解析式.
【答案】
(1)解:f[f(﹣1)]=f[﹣f(1)]=f(0)=0
(2)解:由题意知:f(﹣0)=﹣f(0)=f(0),f(0)=0;
当x<0时,则﹣x>0,
因为当x>0时,f(x)=x2﹣4x+3,
所以f(﹣x)=(﹣x)2﹣4(﹣x)+3=x2+4x+3,
又因为f(x)是定义在R上的奇函数,
所以f(﹣x)=﹣f(x),
所以f(x)=﹣x2﹣4x﹣3,
所以f(x)的表达式为:f(x)=
【解析】(1)f[f(﹣1)]=f[﹣f(1)]=f(0)=0;(2)先根据f(x)是定义在R上的奇函数,得到f(0)=0,再设x<0时,则﹣x>0,结合题意得到f(﹣x)=(﹣x)2+(﹣x)﹣1=x2+4x+3,然后利用函数的奇偶性进行化简,进而得到函数的解析式.
【考点精析】认真审题,首先需要了解函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇).
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(Ⅰ)求图中a的值;
(Ⅱ)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(Ⅲ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?