题目内容

设O、A、B、C为平面上四个点,
OA
=
a
OB
=
b
OC
=
c
,且
a
+
b
+
c
=
0
a
b
=
b
c
=
c
a
=-1
,则|
a
|+|
b
|+|
c
|
等于(  )
A、2
2
B、2
3
C、3
2
D、3
3
分析:
a
+
b
+
c
=
0
直接平方、移项后平方,再利用
a
b
=
b
c
=
c
a
=-1
,求出a2 =
b
2
=2=
c
2
,进而求得|
a
|=|
b
|=
|
c
|的值.
解答:解:∵
a
+
b
+
c
=
0
a
b
=
b
c
=
c
a
=-1
,∴
a
2
+
b
2
+
c
2
-6=0,
a
+
b
=-
c
 两边平方得 a2+
b
2
-2=
c
2
,∴
c
2
=2,∴|
c
|=
2
,a2+
b
2
=4,
a
+
c
=-
b
 两边平方得 a2+
c
2
-2=
b
2
,∴a2+2-2=
b
2
,∴a2=
b
2
=2,
∴|
a
|=|
b
|=
2
,则|
a
|+|
b
|+|
c
|
=3
2

故选 C.
点评:本题考查向量的数量积的运算,向量的模的求法,关键是将条件进行转化变形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网