题目内容
设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+x3),那么当x∈
(-∞,0]时,f(x)= .
x(1-x3).
解析:任取x∈(-∞,0], 有-x∈[0,+∞),
∴f(-x)=-x[1+(-x)3]=-x(1-x3),
∵f(x)是奇函数,∴ f(-x)=-f(x). ∴ f(x)=-f(-x)=x(1-x3),
即当x∈(-∞,0]时,f(x)的表达式为x(1-x3).
练习册系列答案
相关题目