ÌâÄ¿ÄÚÈÝ
¸ø³öÃüÌ⣺
¢ÙÈôº¯Êýy=f£¨2x-1£©ÎªÅ¼º¯Êý£¬Ôòy=f£¨2x£©µÄͼÏó¹ØÓÚx=
¶Ô³Æ£»
¢Ú°Ñº¯Êýy=3sin(2x+
)µÄͼÏóÏòÓÒƽÒÆ
µÃµ½y=3sin2xµÄͼÏó
¢Ûº¯Êýy=2cos(2x+
)µÄͼÏó¹ØÓÚµã(
£¬0)¶Ô³Æ£»
¢Üº¯Êýy=sin|x|ÊÇÖÜÆÚº¯Êý£¬ÇÒÖÜÆÚΪ2¦Ð£»
¢Ý¡÷ABCÖУ¬ÈôsinA£¬sinB£¬sinC³ÉµÈ²îÊýÁУ¬ÔòB¡Ê(0£¬
]£®
ÆäÖÐÕýÈ·ÃüÌâËùÓеÄÐòºÅÊÇ
¢ÙÈôº¯Êýy=f£¨2x-1£©ÎªÅ¼º¯Êý£¬Ôòy=f£¨2x£©µÄͼÏó¹ØÓÚx=
1 |
2 |
¢Ú°Ñº¯Êýy=3sin(2x+
¦Ð |
3 |
¦Ð |
6 |
¢Ûº¯Êýy=2cos(2x+
¦Ð |
3 |
¦Ð |
12 |
¢Üº¯Êýy=sin|x|ÊÇÖÜÆÚº¯Êý£¬ÇÒÖÜÆÚΪ2¦Ð£»
¢Ý¡÷ABCÖУ¬ÈôsinA£¬sinB£¬sinC³ÉµÈ²îÊýÁУ¬ÔòB¡Ê(0£¬
¦Ð |
3 |
ÆäÖÐÕýÈ·ÃüÌâËùÓеÄÐòºÅÊÇ
¢Ú¢Û¢Ý
¢Ú¢Û¢Ý
£®·ÖÎö£º¢Ùº¯Êýy=f£¨2x-1£©ÎªÅ¼º¯Êý£¬¿ÉÖªf£¨x£©¹ØÓÚyÖá¶Ô³Æ£¬¸ù¾ÝƽÒƵÄÐÔÖʽøÐÐÅжϣ»
¢Ú¸ù¾ÝÈý½Çº¯ÊýƽÒƵÄÐÔÖʽøÐÐÅжϣ»
¢Û°Ñµã(
£¬0)´úÈ뺯Êýy=2cos(2x+
)½øÐÐÅжϣ»
¢ÜÒÑÖªy=sin|x|ÊÇÖÜÆÚº¯Êý£¬ÇÒÓÖÊÇżº¯Êý£¬´Ó¶ø½øÐÐÅжϣ»
¢Ý¡÷ABCÖУ¬ÈôsinA£¬sinB£¬sinC³ÉµÈ²îÊýÁУ¬¿ÉµÃ2sinB=sinC+sinA£¬¸ù¾ÝÕýÏÒ¶¨Àí½øÐÐÇó½â£»
¢Ú¸ù¾ÝÈý½Çº¯ÊýƽÒƵÄÐÔÖʽøÐÐÅжϣ»
¢Û°Ñµã(
¦Ð |
12 |
¦Ð |
3 |
¢ÜÒÑÖªy=sin|x|ÊÇÖÜÆÚº¯Êý£¬ÇÒÓÖÊÇżº¯Êý£¬´Ó¶ø½øÐÐÅжϣ»
¢Ý¡÷ABCÖУ¬ÈôsinA£¬sinB£¬sinC³ÉµÈ²îÊýÁУ¬¿ÉµÃ2sinB=sinC+sinA£¬¸ù¾ÝÕýÏÒ¶¨Àí½øÐÐÇó½â£»
½â´ð£º½â£º¢Ùº¯Êýy=f£¨2x-1£©ÎªÅ¼º¯Êý£¬¹ØÓÚyÖá¶Ô³Æ£¬½«ÆäÏò×óƽÒÆ
¸öµ¥Î»¿ÉµÃy=f£¨2x£©£¬Æä¶Ô³ÆÖáΪx=-
£¬¹Ê¢Ù´íÎó£»
¢Úº¯Êýy=3sin(2x+
)µÄͼÏóÏòÓÒƽÒÆ
µÃy=3sin£¨2x-
+
£©=3sin2x£¬¹Ê¢ÚÕýÈ·£»
¢Ûº¯Êýy=2cos(2x+
)£¬µ±x=
ʱ£¬y=2cos
=0£¬¹Ê¢ÛÕýÈ·£»
¢Üº¯Êýy=sin|x|£¬ËüÊÇżº¯Êý£¬²»ÊÇÖÜÆÚº¯Êý£¬¹Ê¢Ü´íÎó£»
¢Ý¡ß¢Ý¡÷ABCÖУ¬ÈôsinA£¬sinB£¬sinC³ÉµÈ²îÊýÁУ¬¿ÉµÃ2sinB=sinC+sinA£¬¿ÉµÃ2b=a+c£¬
¡àcosB=
=
=
-
¡Ý
-
=
£¬
¡àcosB¡Ý
£¬B¡Ê£¨0£¬¦Ð£©£¬
¡àB¡Ê£¨0£¬
]£¬¹Ê¢ÝÕýÈ·£»
¹Ê´ð°¸Îª¢Ú¢Û¢Ý£»
1 |
2 |
1 |
2 |
¢Úº¯Êýy=3sin(2x+
¦Ð |
3 |
¦Ð |
6 |
¦Ð |
3 |
¦Ð |
3 |
¢Ûº¯Êýy=2cos(2x+
¦Ð |
3 |
¦Ð |
12 |
¦Ð |
2 |
¢Üº¯Êýy=sin|x|£¬ËüÊÇżº¯Êý£¬²»ÊÇÖÜÆÚº¯Êý£¬¹Ê¢Ü´íÎó£»
¢Ý¡ß¢Ý¡÷ABCÖУ¬ÈôsinA£¬sinB£¬sinC³ÉµÈ²îÊýÁУ¬¿ÉµÃ2sinB=sinC+sinA£¬¿ÉµÃ2b=a+c£¬
¡àcosB=
a2+c2-b2 |
2ac |
a2+c2-
| ||
2ac |
| ||
2ac |
1 |
4 |
| ||
2ac |
1 |
4 |
1 |
2 |
¡àcosB¡Ý
1 |
2 |
¡àB¡Ê£¨0£¬
¦Ð |
3 |
¹Ê´ð°¸Îª¢Ú¢Û¢Ý£»
µãÆÀ£º±¾Ì⿼²éÈý½Çº¯ÊýµÄÖÜÆÚÐÔ¼°ÆäÇ󷨣¬ÕýÏÒº¯ÊýµÄ¶Ô³ÆÐÔ£¬ÕýÇк¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²é»ù±¾¸ÅÄîµÄÕÆÎճ̶ȣ¬ÊÇ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿