ÌâÄ¿ÄÚÈÝ
Å×ÎïÏßC1£ºy2=4mx£¨m£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚF1£¬½¹µãΪF2£¬ÒÔF1¡¢F2Ϊ½¹µã¡¢ÀëÐÄÂÊe=
µÄÍÖÔ²C2ÓëÅ×ÎïÏßC1µÄÒ»¸ö½»µãΪP£®
£¨1£©µ±m=1ʱÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö±ÏßL¾¹ýÍÖÔ²C2µÄÓÒ½¹µãF2ÓëÅ×ÎïÏßL1½»ÓÚA1£¬A2Á½µã£®Èç¹ûÏÒ³¤|A1A2|µÈÓÚ¡÷PF1F2µÄÖܳ¤£¬ÇóÖ±ÏßLµÄбÂÊ£»
£¨3£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£®
1 |
2 |
£¨1£©µ±m=1ʱÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö±ÏßL¾¹ýÍÖÔ²C2µÄÓÒ½¹µãF2ÓëÅ×ÎïÏßL1½»ÓÚA1£¬A2Á½µã£®Èç¹ûÏÒ³¤|A1A2|µÈÓÚ¡÷PF1F2µÄÖܳ¤£¬ÇóÖ±ÏßLµÄбÂÊ£»
£¨3£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£®
£¨1£©m=1ʱ£¬Å×ÎïÏßC1£ºy2=4x£¬½¹µãΪF2 £¨1£¬0£©£® ÓÉÓÚÍÖÔ²ÀëÐÄÂÊe=
£¬c=1£¬
¹Ê a=2£¬b=
£¬¹ÊËùÇóµÄÍÖÔ²·½³ÌΪ
+
=1£®
£¨2£©ÓÉÓÚ¡÷PF1F2Öܳ¤Îª 2a+2c=6£¬¹ÊÏÒ³¤|A1A2|=6£¬ÉèÖ±ÏßLµÄбÂÊΪk£¬ÔòÖ±ÏßLµÄ·½³ÌΪ y-0=k£¨x-2£©£¬
´úÈëÅ×ÎïÏßC1£ºy2=4x »¯¼òµÃ k2x2-£¨4k2+4£©x+4k2=0£¬¡àx1+x2= 4+
£¬x1x2=4£¬
¡à|A1A2|=
•
=
=6£¬½âµÃ K=¡À
£®
£¨3£©¼ÙÉè´æÔÚʵÊým£¬¡÷PF1F2µÄ±ß³¤ÊÇÁ¬Ðø×ÔÈ»Êý£¬¾·ÖÎöÔÚ¡÷PF1F2ÖÐ|PF1|×£¬|PF2|×î¶Ì£¬Áî|F1F2|=2c=2m£¬
Ôò|PF1|=2m+1£¬|PF2|=2m-1£® ÓÉÅ×ÎïÏߵĶ¨Òå¿ÉµÃ|PF2|=2m-1=xP-£¨-m£©£¬¡àxP=m-1£®
°ÑP(m-1£¬
)´úÈëÍÖÔ²
+
=1£¬½âµÃm=3£®¹Ê´æÔÚʵÊým=3 Âú×ãÌõ¼þ£®
1 |
2 |
¹Ê a=2£¬b=
3 |
x2 |
4 |
y2 |
3 |
£¨2£©ÓÉÓÚ¡÷PF1F2Öܳ¤Îª 2a+2c=6£¬¹ÊÏÒ³¤|A1A2|=6£¬ÉèÖ±ÏßLµÄбÂÊΪk£¬ÔòÖ±ÏßLµÄ·½³ÌΪ y-0=k£¨x-2£©£¬
´úÈëÅ×ÎïÏßC1£ºy2=4x »¯¼òµÃ k2x2-£¨4k2+4£©x+4k2=0£¬¡àx1+x2= 4+
4 |
k2 |
¡à|A1A2|=
1+k2 |
(x1+x2)2- 4x1x2 |
1+k2 |
( 4+
|
2 |
£¨3£©¼ÙÉè´æÔÚʵÊým£¬¡÷PF1F2µÄ±ß³¤ÊÇÁ¬Ðø×ÔÈ»Êý£¬¾·ÖÎöÔÚ¡÷PF1F2ÖÐ|PF1|×£¬|PF2|×î¶Ì£¬Áî|F1F2|=2c=2m£¬
Ôò|PF1|=2m+1£¬|PF2|=2m-1£® ÓÉÅ×ÎïÏߵĶ¨Òå¿ÉµÃ|PF2|=2m-1=xP-£¨-m£©£¬¡àxP=m-1£®
°ÑP(m-1£¬
4m(m-1) |
x2 |
4m2 |
y2 |
3m2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿