ÌâÄ¿ÄÚÈÝ
ƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA1£¨x1£¬y1£©£¬A2£¨x2£¬y2£©£¬¡£¬An£¨xn£¬yn£©ÊÇÖ±Ïßl£ºy=kx+bÉϵÄn¸öµã£¨n¡ÊN*£¬k¡¢b¾ùΪ·ÇÁã³£Êý£©£®
£¨1£©ÈôÊýÁÐ{xn}³ÉµÈ²îÊýÁУ¬ÇóÖ¤£ºÊýÁÐ{yn}Ò²³ÉµÈ²îÊýÁУ»
£¨2£©ÈôµãPÊÇÖ±ÏßlÉÏÒ»µã£¬ÇÒ£¬Çóa1+a2µÄÖµ£»
£¨3£©ÈôµãPÂú×㣬ÎÒÃdzÆÊÇÏòÁ¿£¬£¬¡£¬µÄÏßÐÔ×éºÏ£¬{an}ÊǸÃÏßÐÔ×éºÏµÄϵÊýÊýÁУ®µ±ÊÇÏòÁ¿£¬£¬¡£¬µÄÏßÐÔ×éºÏʱ£¬Çë²Î¿¼ÒÔÏÂÏßË÷£º
¢ÙϵÊýÊýÁÐ{an}ÐèÂú×ãÔõÑùµÄÌõ¼þ£¬µãP»áÂäÔÚÖ±ÏßlÉÏ£¿
¢ÚÈôµãPÂäÔÚÖ±ÏßlÉÏ£¬ÏµÊýÊýÁÐ{an}»áÂú×ãÔõÑùµÄ½áÂÛ£¿
¢ÛÄÜ·ñ¸ù¾ÝÄã¸ø³öµÄϵÊýÊýÁÐ{an}Âú×ãµÄÌõ¼þ£¬È·¶¨ÔÚÖ±ÏßlÉϵĵãPµÄ¸öÊý»ò×ø±ê£¿
ÊÔÌá³öÒ»¸öÏà¹ØÃüÌ⣨»ò²ÂÏ룩²¢¿ªÕ¹Ñо¿£¬Ð´³öÄãµÄÑо¿¹ý³Ì£®[±¾Ð¡Ì⽫¸ù¾ÝÄãÌá³öµÄÃüÌ⣨»ò²ÂÏ룩µÄÍ걸³Ì¶ÈºÍÑо¿¹ý³ÌÖÐÌåÏÖµÄ˼ά²ã´Î£¬¸øÓ費ͬµÄÆÀ·Ö]£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÈôÉèµÈ²îÊýÁÐ{xn}µÄ¹«²îΪd£¬Ò×µÃyn+1-ynΪ³£Êý£¬¼´Ö¤ÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©ÓɵãP¡¢A1ºÍA2¶¼ÊÇÖ±ÏßlÉϵĵ㣬֪=¦Ë£¨ÆäÖЦˡÙ-1£©£»ÓÉÏòÁ¿µÄÏßÐÔÔËË㣬µÃ=+=+=+¦Ë£»ÕûÀí¿ÉµÃ=+£»¼´µÃa1+a2µÄÖµ£»
£¨3£©Éè´æÔÚµãP£¨x£¬y£©Âú×ã=a1+a2+¡+an£¬Ôòx=a1x1+a2x2+¡+anxn£¬µ±i+j=n+1ʱ£¬ÓÐai=aj£¬ËùÒÔx=anx1+an-1x2+¡+a2xn-1+a1xn£¬Ôò2x=a1£¨x1+xn£©+a2£¨x2+xn-1£©+¡+an£¨xn+x1£©£¬ÓÉÊýÁÐ{xn}ÊǵȲîÊýÁУ¬Ôòx1+xn=x2+xn-1=¡=xn+x1£¬¿ÉµÃ2x£¬´Ó¶øµÃx£¬Í¬ÀíµÃy£»¼´µÃµãPÔÚÖ±ÏßlÉÏ£®
½â´ð£º½â£º£¨1£©Ö¤Ã÷£ºÉèµÈ²îÊýÁÐ{xn}µÄ¹«²îΪd£¬ÒòΪyn+1-yn=£¨kxn+1+b£©-£¨kxn+b£©=k£¨xn+1-xn£©=kdÊdz£Êý£¬
¡àÊýÁÐ{yn}µÈ²îÊýÁУ®
£¨2£©ÒòΪµãP¡¢A1ºÍA2¶¼ÊÇÖ±ÏßlÉÏÒ»µã£¬¹ÊÓÐ=¦Ë£¨ÆäÖЦˡÙ-1£©£»
ÓÚÊÇ£¬=+=+=+¦Ë£»
¡à=+¦Ë£¬¼´=+£»
Áîa1=£¬a2=£¬ÔòÓÐa1+a2=1£®
£¨3£©¼ÙÉè´æÔÚµãP£¨x£¬y£©Âú×ã=a1+a2+¡+an£¬
ÔòÓÐx=a1x1+a2x2+¡+anxn£¬ÇÒµ±i+j=n+1ʱ£¬ºãÓÐai=aj£¬
ËùÒÔÓÐx=anx1+an-1x2+¡+a2xn-1+a1xn£¬
ËùÒÔ2x=a1£¨x1+xn£©+a2£¨x2+xn-1£©+¡+an£¨xn+x1£©£¬
ÓÖÒòΪÊýÁÐ{xn}³ÉµÈ²îÊýÁУ¬ÓÚÊÇx1+xn=x2+xn-1=¡=xn+x1£¬
ËùÒÔ£¬2x=£¨a1+a2+¡+an£©£¨x1+xn£©=x1+xn£»
¹Êx=£¬Í¬Àíy=£¬ÇÒµãPÔÚÖ±ÏßlÉÏ£¨ÊÇA1¡¢AnµÄÖе㣩£¬
¼´´æÔÚµãPÂú×ãÒªÇó£®
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁÐÒÔ¼°Æ½ÃæÏòÁ¿ÖªÊ¶µÄ×ÛºÏÓ¦Óã¬ÊôÓÚ½ÏÄѵÄÌâÄ¿£»½âÌâʱÐëÒªÈÏÕæÉóÌ⣬ϸÐĽâ´ð£¬ÒÔÃâ³ö´í£®
£¨2£©ÓɵãP¡¢A1ºÍA2¶¼ÊÇÖ±ÏßlÉϵĵ㣬֪=¦Ë£¨ÆäÖЦˡÙ-1£©£»ÓÉÏòÁ¿µÄÏßÐÔÔËË㣬µÃ=+=+=+¦Ë£»ÕûÀí¿ÉµÃ=+£»¼´µÃa1+a2µÄÖµ£»
£¨3£©Éè´æÔÚµãP£¨x£¬y£©Âú×ã=a1+a2+¡+an£¬Ôòx=a1x1+a2x2+¡+anxn£¬µ±i+j=n+1ʱ£¬ÓÐai=aj£¬ËùÒÔx=anx1+an-1x2+¡+a2xn-1+a1xn£¬Ôò2x=a1£¨x1+xn£©+a2£¨x2+xn-1£©+¡+an£¨xn+x1£©£¬ÓÉÊýÁÐ{xn}ÊǵȲîÊýÁУ¬Ôòx1+xn=x2+xn-1=¡=xn+x1£¬¿ÉµÃ2x£¬´Ó¶øµÃx£¬Í¬ÀíµÃy£»¼´µÃµãPÔÚÖ±ÏßlÉÏ£®
½â´ð£º½â£º£¨1£©Ö¤Ã÷£ºÉèµÈ²îÊýÁÐ{xn}µÄ¹«²îΪd£¬ÒòΪyn+1-yn=£¨kxn+1+b£©-£¨kxn+b£©=k£¨xn+1-xn£©=kdÊdz£Êý£¬
¡àÊýÁÐ{yn}µÈ²îÊýÁУ®
£¨2£©ÒòΪµãP¡¢A1ºÍA2¶¼ÊÇÖ±ÏßlÉÏÒ»µã£¬¹ÊÓÐ=¦Ë£¨ÆäÖЦˡÙ-1£©£»
ÓÚÊÇ£¬=+=+=+¦Ë£»
¡à=+¦Ë£¬¼´=+£»
Áîa1=£¬a2=£¬ÔòÓÐa1+a2=1£®
£¨3£©¼ÙÉè´æÔÚµãP£¨x£¬y£©Âú×ã=a1+a2+¡+an£¬
ÔòÓÐx=a1x1+a2x2+¡+anxn£¬ÇÒµ±i+j=n+1ʱ£¬ºãÓÐai=aj£¬
ËùÒÔÓÐx=anx1+an-1x2+¡+a2xn-1+a1xn£¬
ËùÒÔ2x=a1£¨x1+xn£©+a2£¨x2+xn-1£©+¡+an£¨xn+x1£©£¬
ÓÖÒòΪÊýÁÐ{xn}³ÉµÈ²îÊýÁУ¬ÓÚÊÇx1+xn=x2+xn-1=¡=xn+x1£¬
ËùÒÔ£¬2x=£¨a1+a2+¡+an£©£¨x1+xn£©=x1+xn£»
¹Êx=£¬Í¬Àíy=£¬ÇÒµãPÔÚÖ±ÏßlÉÏ£¨ÊÇA1¡¢AnµÄÖе㣩£¬
¼´´æÔÚµãPÂú×ãÒªÇó£®
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁÐÒÔ¼°Æ½ÃæÏòÁ¿ÖªÊ¶µÄ×ÛºÏÓ¦Óã¬ÊôÓÚ½ÏÄѵÄÌâÄ¿£»½âÌâʱÐëÒªÈÏÕæÉóÌ⣬ϸÐĽâ´ð£¬ÒÔÃâ³ö´í£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿