题目内容
(2013•资阳二模)以抛物线y2=4x的焦点为圆心,且与抛物线的准线相切的圆的方程是( )
分析:找出抛物线的焦点坐标和准线方程,确定圆心和半径,从而求出圆的标准方程.
解答:解:抛物线y2=4x的焦点(1,0),准线方程为:x=-1,
∴以抛物线y2=4x的焦点为圆心,并且与此抛物线的准线相切的圆的半径是2,
∴以抛物线y2=4x的焦点为圆心,并且与此抛物线的准线相切的圆的方程为;(x-1)2+y2=4,
故选B.
∴以抛物线y2=4x的焦点为圆心,并且与此抛物线的准线相切的圆的半径是2,
∴以抛物线y2=4x的焦点为圆心,并且与此抛物线的准线相切的圆的方程为;(x-1)2+y2=4,
故选B.
点评:本题考查抛物线的性质及求圆的标准方程的方法,属于中档题.
练习册系列答案
相关题目