ÌâÄ¿ÄÚÈÝ

ƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖª¡ÑM¾­¹ýµãF1£¨0£¬-c£©£¬F2£¨0£¬c£©£¬A£¨
3
c£¬0£©Èýµã£¬ÆäÖÐc£¾0£®
£¨1£©Çó¡ÑMµÄ±ê×¼·½³Ì£¨Óú¬cµÄʽ×Ó±íʾ£©£»
£¨2£©ÒÑÖªÍÖÔ²
y2
a2
+
x2
b2
=1(a£¾b£¾0)
£¨ÆäÖÐa2-b2=c2£©µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðΪD¡¢B£¬¡ÑMÓëxÖáµÄÁ½¸ö½»µã·Ö±ðΪA¡¢C£¬ÇÒAµãÔÚBµãÓҲ࣬CµãÔÚDµãÓҲ࣮
¢ÙÇóÍÖÔ²ÀëÐÄÂʵÄÈ¡Öµ·¶Î§£»
¢ÚÈôA¡¢B¡¢M¡¢O¡¢C¡¢D£¨OΪ×ø±êÔ­µã£©ÒÀ´Î¾ùÔÈ·Ö²¼ÔÚxÖáÉÏ£¬ÎÊÖ±ÏßMF1ÓëÖ±ÏßDF2µÄ½»µãÊÇ·ñÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£¿ÈôÊÇ£¬ÇëÇó³öÕâÌõ¶¨Ö±Ïߵķ½³Ì£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Éè¡ÑMµÄ·½³ÌΪx2+y2+Dx+Ey+F=0£¬ÔòÓÉÌâÉ裬µÃ
c2-Ec+F=0
c2+Ec+F=0
3c2+
3
Dc+F=0
£¬ÓÉ´ËÄÜÇó³ö¡ÑMµÄ·½³Ì£®
£¨2£©¡ÑMÓëxÖáµÄÁ½¸ö½»µãA(
3
c£¬0)
£¬C(-
3
3
c£¬0)
£¬ÓÖB£¨b£¬0£©£¬D£¨-b£¬0£©£¬ÓÉÌâÉè
3
c£¾b
-
3
3
c£¾-b
£¬ÓÉ´ËÄÜÇó³öÍÖÔ²ÀëÐÄÂʵÄÈ¡Öµ·¶Î§£®
£¨3£©ÓÉM(
3
3
c£¬0)
£¬µÃ
3
c-b=b-
3
3
c=
3
3
c
£®ËùÒÔÖ±ÏßMF1µÄ·½³ÌΪ
x
3
3
c
-
y
c
=1
£¬ÓÉ´ËÄܹ»µ¼³öÖ±ÏßMF1ÓëÖ±ÏßDF2µÄ½»µãQÔÚ¶¨Ö±Ïßy=
3
3
4
x
ÉÏ£®
½â´ð£º½â£º£¨1£©Éè¡ÑMµÄ·½³ÌΪx2+y2+Dx+Ey+F=0£¬
ÔòÓÉÌâÉ裬µÃ
c2-Ec+F=0
c2+Ec+F=0
3c2+
3
Dc+F=0

½âµÃ
D=-
2
3
3
c
E=0
F=-c2

¡ÑMµÄ·½³ÌΪx2+y2-
2
3
3
cx-c2=0
£¬
¡ÑMµÄ±ê×¼·½³ÌΪ(x-
3
3
c)2+y2=
4
3
c2
£»£¨5·Ö£©
£¨2£©¡ÑMÓëxÖáµÄÁ½¸ö½»µãA(
3
c£¬0)
£¬C(-
3
3
c£¬0)
£¬
ÓÖB£¨b£¬0£©£¬D£¨-b£¬0£©£¬
ÓÉÌâÉè
3
c£¾b
-
3
3
c£¾-b
¼´
3
c£¾b
3
3
c£¼b

ËùÒÔ
3c2£¾a2-c2
1
3
c2£¼a2-c2
½âµÃ
1
2
£¼
c
a
£¼
3
2
£¬
¼´
1
2
£¼e£¼
3
2
£®ËùÒÔÍÖÔ²ÀëÐÄÂʵÄÈ¡Öµ·¶Î§Îª(
1
2
£¬
3
2
)
£»£¨10·Ö£©
£¨3£©ÓÉ£¨1£©£¬µÃM(
3
3
c£¬0)
£®
ÓÉÌâÉ裬µÃ
3
c-b=b-
3
3
c=
3
3
c
£®
¡àb=
2
3
3
c
£¬D(-
2
3
3
c£¬0)
£®
¡àÖ±ÏßMF1µÄ·½³ÌΪ
x
3
3
c
-
y
c
=1
£¬
¢ÙÖ±ÏßDF2µÄ·½³ÌΪ-
x
2
3
3
c
+
y
c
=1
£®
¢ÚÓÉ¢Ù¢Ú£¬µÃÖ±ÏßMF1ÓëÖ±ÏßDF2µÄ½»µãQ(
4
3
3
c£¬3c)
£¬
Ò×ÖªkOQ=
3
3
4
Ϊ¶¨Öµ£¬
¡àÖ±ÏßMF1ÓëÖ±ÏßDF2µÄ½»µãQÔÚ¶¨Ö±Ïßy=
3
3
4
x
ÉÏ£®£¨15·Ö£©
µãÆÀ£º±¾Ì⿼²éԲ׶ÇúÏßµÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâÔ²ÇúÏßµÄÐÔÖʺ͹«Ê½µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø