题目内容
【题目】已知函数,其中,给出四个结论:
①函数是最小正周期为的奇函数;
②函数的图像的一条对称轴是;
③函数图像的一个对称中心是;
④函数的递增区间为.则正确结论的个数为( )
A. 4个 B. 3个 C. 2个 D. 1个
【答案】B
【解析】解答:
∵
=cos2xcossin2xsincos2x=cos2xsin2xcos2x=sin2xcos2x=sin(2x+)
∴T=π,即函数f(x)的最小正周期为π,
但f(0)=sin=≠0,函数f(x)不是奇函数。命题①错误;
∵f()=sin(2×+)=sin=1,
∴函数f(x)图象的一条对称轴是x=.命题②正确;
∵f()=sin(2×+)=sinπ=0,
∴函数f(x)图象的一个对称中心为(,0).命题③正确;
由+2kπ2x++2kπ,得:
+kπx+kπ,k∈Z.
∴函数f(x)的递增区间为[kπ+,kπ+],k∈Z.命题④正确。
∴正确结论的个数是3个。
故选:B.
【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了名女性或名男性,根据调研结果得到如图所示的等高条形图.
(1)完成下列 列联表:
喜欢旅游 | 不喜欢旅游 | 估计 | |
女性 | |||
男性 | |||
合计 |
(2)能否在犯错误概率不超过的前提下认为“喜欢旅游与性别有关”.
附:
参考公式:
,其中
【题目】某高中在校学生2 000人,高一年级与高二年级人数相同并且都比高三年级多1人.为了响应市教育局“阳光体育”号召,该校开展了跑步和跳绳两项比赛,要求每人都参加而且只参加其中一项,各年级参与项目人数情况如下表:
年级 项目 | 高一年级 | 高二年级 | 高三年级 |
跑步 | a | b | c |
跳绳 | x | y | z |
其中a∶b∶c=2∶3∶5,全校参与跳绳的人数占总人数的. 为了了解学生对本次活动的满意度,采用分层抽样从中抽取一个200人的样本进行调查,则高二年级中参与跑步的同学应抽取多少人?
【题目】2017年“一带一路”国际合作高峰论坛于今年5月14日至15日在北京举行.为高标准完成高峰论坛会议期间的志愿服务工作,将从27所北京高校招募大学生志愿者,某调查机构从是否有意愿做志愿者在某高校访问了80人,经过统计,得到如下丢失数据的列联表:(,表示丢失的数据)
无意愿 | 有意愿 | 总计 | |
男 | 40 | ||
女 | 5 | ||
总计 | 25 | 80 |
(1)求出的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;
(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.
附参考公式及数据: ,其中.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |