题目内容
已知曲线f(x)=| log2(x+1) |
| x+1 |
(1)求数列{xn}的通项公式;
(2)设四边形PnQnQn+1Pn+1的面积是Sn,求证:
| 1 |
| S1 |
| 1 |
| 2S2 |
| 1 |
| nSn |
分析:(1)由xn=2xn-1+1,从而有xn+1=2(xn-1+1),故可得{xn+1}是公比为2的等比数列,进而可求数列{xn}的通项公式;
(2)先将四边形PnQnQn+1Pn+1的面积表示为:Sn=
,再表示
,进而利用放缩法可证.
(2)先将四边形PnQnQn+1Pn+1的面积表示为:Sn=
| 3n+1 |
| 4 |
| 1 |
| nSn |
解答:解:(1)由xn=2xn-1+1得xn+1=2(xn-1+1),∵x1=1∴xn+1≠0,
故{xn+1}是公比为2的等比数列,∴xn=2n-1.(6分)
(2)∵yn=f(xn)=
=
,∴QnQn+1=2n,而PnQn=
,(9分)
∴四边形PnQnQn+1Pn+1的面积为:Sn=
,∴
=
=12(
-
)<12(
-
)=4(
-
),
故
+
+…+
<4(1-
)<4.(14分)
故{xn+1}是公比为2的等比数列,∴xn=2n-1.(6分)
(2)∵yn=f(xn)=
| log2(2n-1+1) |
| 2n-1+1 |
| n |
| 2n |
| n |
| 2n |
∴四边形PnQnQn+1Pn+1的面积为:Sn=
| 3n+1 |
| 4 |
| 1 |
| nSn |
| 4 |
| n(3n+1) |
| 1 |
| 3n |
| 1 |
| 3n+1 |
| 1 |
| 3n |
| 1 |
| 3n+3 |
| 1 |
| n |
| 1 |
| n+1 |
故
| 1 |
| S1 |
| 1 |
| 2S2 |
| 1 |
| nSn |
| 1 |
| n+1 |
点评:本题考查构造法证明等比数列,从而求数列的通项公式,考查放缩法证明不等式,属于中档题.
练习册系列答案
相关题目