题目内容

已知曲线f(x)=
log2(x+1)
x+1
(x>0)上有一点列Pn(xn,yn)(n∈N*),点Pn在x轴上的射影是Qn(xn,0),且xn=2+1(n∈N*),x1=1.
(1)求数列{xn}的通项公式;
(2)设四边形PnQnQn+1Pn+1的面积是Sn,求证:
1
S1
+
1
2S2
+…+
1
nSn
<4.
分析:(1)由xn=2xn-1+1,从而有xn+1=2(xn-1+1),故可得{xn+1}是公比为2的等比数列,进而可求数列{xn}的通项公式;
(2)先将四边形PnQnQn+1Pn+1的面积表示为:Sn=
3n+1
4
,再表示
1
nSn
,进而利用放缩法可证.
解答:解:(1)由xn=2xn-1+1得xn+1=2(xn-1+1),∵x1=1∴xn+1≠0,
故{xn+1}是公比为2的等比数列,∴xn=2n-1.(6分)
(2)∵yn=f(xn)=
log2(2n-1+1)
2n-1+1
=
n
2n
,∴QnQn+1=2n,而PnQn=
n
2n
,(9分)
∴四边形PnQnQn+1Pn+1的面积为:Sn=
3n+1
4
,∴
1
nSn
=
4
n(3n+1)
=12(
1
3n
-
1
3n+1
)<12(
1
3n
-
1
3n+3
)=4(
1
n
-
1
n+1
)

1
S1
+
1
2S2
+…+
1
nSn
4(1-
1
n+1
)<4
.(14分)
点评:本题考查构造法证明等比数列,从而求数列的通项公式,考查放缩法证明不等式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网