ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯ÊýF(x)=£¬ÔÚÓÉÕýÊý×é³ÉµÄÊýÁÐ{an}ÖУ¬a1=1£¬=F(an)(n¡ÊN*).£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔÚÊýÁÐ{bn}ÖУ¬¶ÔÈÎÒâÕýÕûÊýn£¬bn¡¤¶¼³ÉÁ¢£¬ÉèSnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬±È½ÏSnÓë12µÄ´óС£»
£¨3£©ÔÚµãÁÐAn(2n,)(n¡ÊN*)ÖУ¬ÊÇ·ñ´æÔÚÈý¸ö²»Í¬µãAk¡¢Al¡¢Am£¬Ê¹Ak¡¢Al¡¢AmÔÚÒ»ÌõÖ±ÏßÉÏ£¿Èô´æÔÚ£¬Ð´³öÒ»×éÔÚÒ»ÌõÖ±ÏßÉϵÄÈý¸öµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.
£¨1£©½â£ºÓÉ=f(an)£¬µÃ==.?
¡à-=4,¼´{}ÊÇÒÔ=1ΪÊ×Ï4Ϊ¹«²îµÄµÈ²îÊýÁÐ.?
ÓÐ=1+£¨n-1£©¡Á4=4n-3£¬?
¡ßan£¾0,¡àan=. ?
£¨2£©½â£º¡ßbn¡¤,?
¡àbn¡¤£Û(3n-1)+£Ý=bn(4n2-1)=1.?
¡àbn==(-).?
¡àSn=b1+b2+¡+bn?
=£Û(1-)+(-)+¡+(-)£Ý?
=(1-)£¼.?
¡àSn£¼. ?
£¨3£©½â£ºµãÁÐAn(2n,(n¡ÊN*)Öв»¿ÉÄÜÓй²ÏßµÄÈý¸öµã. ?
¸ù¾Ý£¨1£©£¬¿ÉµÃAn(2n,)(n¡ÊN*)£¬?
Áîx=2n,y=,Ôòy=£¨x¡Ý2£©.?
µã£¨x,y£©ÔÚÇúÏßx2-y2=1(x¡Ý2,y¡Ý)ÉÏ£¬?
ËùÒÔAn(2n,)ÔÚÇúÏßx2-y2=1(x¡Ý2,y¡Ý)ÉÏ£¬¶øÖ±Ïß·½³ÌÓëx2-y2=1ÁªÁ¢×é³ÉµÄ·½³Ì×é×î¶àÓÐÁ½×鲻ͬµÄ½â.ËùÒÔÖ±ÏßÓëx2-y2=1×î¶àÓÐÁ½¸ö½»µã.?
ËùÒÔµãÁÐAn(2n,)(n¡ÊN*)Öв»¿ÉÄÜÓй²ÏßµÄÈý¸öµã.
|
A¡¢(
| ||||
B¡¢£¨
| ||||
C¡¢£¨
| ||||
D¡¢[
|