题目内容
已知函数f(x)=1 |
3 |
1 |
2 |
(1)求实数a的取值范围.
(2)是否存在实数a,使得f′(x)=x的两个根x1,x2满足0<x1<x2<1,若存在,求实数a的取值范围;若不存在,请说明理由.
分析:(1)根据极值的信息,则选用导数法,先求f'(x),再由f(x)有极值,可有=a2-4b>0,又由在x=-1处的切线与直线x-y+1=0平行,可得f'(-1)=1-a+b=1从而求解.
(2)先假存在,则根据条件,则有
解之得答案.
(2)先假存在,则根据条件,则有
|
解答:解:(1)f'(x)=x2+ax+b(1分)
因为f(x)有极值,∴△=a2-4b>0(2分)
又在x=-1处的切线与直线x-y+1=0平行,∴f'(-1)=1-a+b=1①②③④
∴b=a代入(*)式得,a2-4b>0,∴a>4或a<0(6分)
(2)假若存在实数a,使f'(x)=x的两个根x1、x2满足0<x1<x2<1,
即x2+(a-1)x+a=0的两个根x1、x2满足0<x1<x2<1,
令g(x)=x2+(a-1)x+a,则有:
解之得
0<a<3∴存在实数a,且0<a<3使是f'(x)=x的两个根满足0<x1<x2<1.
因为f(x)有极值,∴△=a2-4b>0(2分)
又在x=-1处的切线与直线x-y+1=0平行,∴f'(-1)=1-a+b=1①②③④
∴b=a代入(*)式得,a2-4b>0,∴a>4或a<0(6分)
(2)假若存在实数a,使f'(x)=x的两个根x1、x2满足0<x1<x2<1,
即x2+(a-1)x+a=0的两个根x1、x2满足0<x1<x2<1,
令g(x)=x2+(a-1)x+a,则有:
|
0<a<3∴存在实数a,且0<a<3使是f'(x)=x的两个根满足0<x1<x2<1.
点评:本题主要考查极值和导数的几何意义以及方程根的分布问题.
练习册系列答案
相关题目
已知函数f(x)=
,g(x)=1+
,若f(x)>g(x),则实数x的取值范围是( )
1 |
|x| |
x+|x| |
2 |
A、(-∞,-1)∪(0,1) | ||||
B、(-∞,-1)∪(0,
| ||||
C、(-1,0)∪(
| ||||
D、(-1,0)∪(0,
|