题目内容

设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1、x2∈[0,],都有f(x1+x2)=f(x1)·f(x2).

(1)设f(1)=2,求f(),f();

(2)证明f(x)是周期函数.

(1)解:由f(x1+x2)=f(x1)·f(x2),x1、x2∈[0,]知f(x)=f()·f()=[f()]2≥0,x∈[0,1].

    因为f(1)=f()·f()=[f()]2?,及f(1)=2,所以f()=.

    因为f()=f()·f()=[f()]2,及f()=,所以f()=.

(2)证明:依题设y=f(x)关于直线x=1对称,故f(x)=f(1+1-x)f(x)=f(2-x),x∈R.

    又由f(x)是偶函数知f(-x)=f(x),x∈R,所以f(-x)=f(2-x),x∈R.将上式中-x以x代换,得f(x)=f(x+2),x∈R.

    这表明f(x)是R上的周期函数,且2是它的一个周期.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网