题目内容

17.已知集合M={x||x-3|<4},集合N={x|$\frac{x+2}{x-1}$≤0,x∈Z},那么M∩N=(  )
A.{x|-1<x≤1}B.{-1,0}C.{0}D.{0,1}

分析 分别求出关于集合M、N的x的范围,从而求出M∩N.

解答 解:∵集合M={x||x-3|<4}={x|-1<x<7},
集合N={x|$\frac{x+2}{x-1}$≤0,x∈Z}={x|-2≤x<1,x∈Z}={-2,-1,0},
那么M∩N={0},
故选:C.

点评 本题考查了集合的运算,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网