题目内容
用红、黄、蓝、白、黑五种颜色在图中标号为1,2,3,4的四个区域涂色,每个区域涂一种颜色,相邻两个区域涂不同的颜色,颜色可以反复使用,则不同的涂色方法共有( )
分析:先涂1号区域,易得其有5种涂法,再分类讨论其他区域:①若2、4号区域涂不同的颜色,②若2、4号区域涂相同的颜色,分别求出2、3、4号区域的涂色方案数目再相加可得其他区域涂色方案数目;由分步计数原理计算可得答案.
解答:解:对于1号区域,有5种颜色可选,即有5种涂法,
分类讨论其他区域:①若2、4号区域涂不同的颜色,则有A42=12种涂法,3号区域有3种涂法,此时2、3、4号区域有12×3=36种涂法;
②若2、4号区域涂相同的颜色,则有4种涂法,3号区域有4种涂法,此时2、3、4号区域有有4×4=16种涂法;
则共有5×(36+16)=5×52=260种;
故选A.
分类讨论其他区域:①若2、4号区域涂不同的颜色,则有A42=12种涂法,3号区域有3种涂法,此时2、3、4号区域有12×3=36种涂法;
②若2、4号区域涂相同的颜色,则有4种涂法,3号区域有4种涂法,此时2、3、4号区域有有4×4=16种涂法;
则共有5×(36+16)=5×52=260种;
故选A.
点评:本题考查分类计数原理与分步计数原理的运用,注意本题中2、4号区域的颜色相同与否对3号区域有影响,需要分类讨论.
练习册系列答案
相关题目