题目内容
【题目】已知函数.
(1)若函数与函数在点处有共同的切线,求的值;
(2)证明:;
(3)若不等式对所有,都成立,求实数的取值范围.
【答案】(1);(2)证明见解析;(3).
【解析】
试题分析:(1)借助题设条件运用导数的几何意义求解;(2)依据题设构造函数运用导数知识探求;(3)先将不等式进行转化,再构造函数运用导数知识探求.
试题解析:
(1),,,
与在点处有共同的切线,
,即,……………………………4分
(2)令,则,
则在上是增函数,在上是减函数,
的最大值为,的最小值是,…………………………6分
设,,
故在上是增函数,在上是减函数,故,
;………………………8分
(3)不等式对所有的,都成立,
则对所有的,都成立,
令,,是关于的一次函数,
,,当时,取得最小值,
即,当时,恒成立,故.……………………………12分
【题目】为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持“新农村建设”人数如下表:
年龄 | ||||||
频数 | 10 | 20 | 30 | 20 | 10 | 10 |
支持“新农村建设” | 3 | 11 | 26 | 12 | 6 | 2 |
(1)根据上述统计数据填下面的列联表,并判断是否有的把握认为以50岁为分界点对“新农村建设”政策的支持度有差异;
年龄低于50岁的人数 | 年龄不低于50岁的人数 | 合计 | |
支持 | |||
不支持 | |||
合计 |
(2)现从年龄在内的5名被调查人中任选两人去参加座谈会,求选出两人中恰有一人支持新农村建设的概率.
参考数据:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式:,其中.
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:,经统计,其高度均在区间,内,将其按,,,,,,,,,,,分成6组,制成如图所示的频率分布直方图.其中高度为及以上的树苗为优质树苗.
(1)求图中的值,并估计这批树苗的平均高度(同一组中的数据用该组区间的中点值作代表);
(2)已知所抽取的这120棵树苗来自于,两个试验区,部分数据如下列联表:
试验区 | 试验区 | 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
将列联表补充完整,并判断是否有的把握认为优质树苗与,两个试验区有关系,并说明理由.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.