题目内容
已知{an}是等差数列,且公差d≠0,又a1,a2,a4依次成等比数列,则
=
.
a1+a4+a10 |
a2+a4+a1 |
15 |
7 |
15 |
7 |
分析:由等差数列的项a1,a2,a4依次成等比数列,得到首项和公差的关系,代入要求的式子即可求得结果.
解答:解:由{an}是等差数列,所以,a2=a1+d,a4=a1+3d,
又a1,a2,a4依次成等比数列,所以,a22=a1a4,
即(a1+d)2=a1(a1+3d),所以,a1d=d2,因为d≠0,所以,a1=d.
则
=
=
=
.
故答案为
.
又a1,a2,a4依次成等比数列,所以,a22=a1a4,
即(a1+d)2=a1(a1+3d),所以,a1d=d2,因为d≠0,所以,a1=d.
则
a1+a4+a10 |
a2+a1+a4 |
3a1+12d |
3a1+4d |
15d |
7d |
15 |
7 |
故答案为
15 |
7 |
点评:本题考查了等差数列和等比数列的通项公式,考查了学生的计算能力,是基础题.
练习册系列答案
相关题目