题目内容

已知{an}是等差数列,且公差d≠0,又a1,a2,a4依次成等比数列,则
a1+a4+a10
a2+a4+a1
=
15
7
15
7
分析:由等差数列的项a1,a2,a4依次成等比数列,得到首项和公差的关系,代入要求的式子即可求得结果.
解答:解:由{an}是等差数列,所以,a2=a1+d,a4=a1+3d,
又a1,a2,a4依次成等比数列,所以,a22=a1a4
(a1+d)2=a1(a1+3d),所以,a1d=d2,因为d≠0,所以,a1=d.
a1+a4+a10
a2+a1+a4
=
3a1+12d
3a1+4d
=
15d
7d
=
15
7

故答案为
15
7
点评:本题考查了等差数列和等比数列的通项公式,考查了学生的计算能力,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网