题目内容

已知p和q是两个不相等的正整数,且q≥2,则
lim
n→∞
(1+
1
n
)
p
-1
(1+
1
n
)
q
-1
=(  )
A、0
B、1
C、
p
q
D、
p-1
q-1
分析:本题考查数列的极限和运算法则,可用特殊值探索结论,即同时考查学生思维的灵活性.当不能直接运用极限运算法则时,首先化简变形,后用法则即可.本题也体现了等比数列求和公式的逆用.
解答:解析:法一特殊值法,由题意取p=1,q=2,
lim
n→∞
(1+
1
n
)
p
-1
(1+
1
n
)
q
-1
=
lim
n→∞
1
n
1
n2
+
2
n
=
lim
n→∞
n
1+2n
=
1
2
=
p
q
,可见应选C
法二∵1+(1+x)+(1+x)2+…+(1+x)m-1=
1-(1+x)m
1-(1+x)

∴(1+x)m-1=x[1+(1+x)+(1+x)2+(1+x)m-1]
x=
1
n
,m分别取p和q,则原式化为
lim
n→∞
(1+
1
n
)
p
-1
(1+
1
n
)
q
-1
=
lim
n→∞
1
n
[1+(1+
1
n
)+(1+
1
n
)
2
+(1+
1
n
)
p-1
]
1
n
[1+(1+
1
n
)+(1+
1
n
)
2
+(1+
1
n
)
q-1
]

lim
n→∞
(1+
1
n
)=1,
lim
n→∞
(1+
1
n
)2=1,…,
lim
n→∞
(1+
1
n
)p-1=1

所以原式=
1+1+…+1
1+1+…+1
=
p
q
(分子、分母1的个数分别为p个、q个)
故选C.
点评:注意到本题的易错点:取特值时忽略p和q是两个不相等的正整数的条件,误选B;或不知变形而无法求解,或者认为是
0
0
型而误选B,看错项数而错选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网