题目内容
12.集合 A={ x|x+1<0},B={x|x-3<0},则集合 (∁R A)∩B=( )A. | { x|1<x<3} | B. | { x|-1≤x<3} | C. | { x|x<-1} | D. | { x|x>3} |
分析 分别求出两集合中不等式的解集,确定出A与B,找出R中不属于A的部分求出A的补集,找出B与A补集的公共部分,即可求出所求的集合.
解答 解:由x+1<0,解得:x<-1;由x-3<0,解得:x<3,
∴A={ x|x<-1},B={x|x<3},
∵全集为R,
∴∁RA=[-1,+∞),
则A∩(∁RB)={x|-1≤x<3}.
故选:B.
点评 本题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
2.如图,在一个可以向下和向右方无限延伸的表格中,将正偶数按已填好的各个方格中的数字显现的规律填入各方格中.其中第i行,第j列的数记作aij,i,j∈N*,如a11=2,a23=16.
(Ⅰ)写出a15,a53,a66的值;
(Ⅱ) 若aij=502,求i,j的值;(只需写出结论)
(Ⅲ)设bn=ann,cn=$\frac{1}{2^n}-\frac{4}{{{b_{n+1}}-2}}$(n∈N*,),记数列{cn}的前n项和为Sn,求Sn;并求正整数k,使得对任意n∈N*,均有Sk≥Sn.
2 | 4 | 8 | 14 | … |
6 | 10 | 16 | 24 | … |
12 | 18 | 26 | 36 | … |
20 | 28 | 38 | 50 | … |
… | … | … | … | … |
(Ⅱ) 若aij=502,求i,j的值;(只需写出结论)
(Ⅲ)设bn=ann,cn=$\frac{1}{2^n}-\frac{4}{{{b_{n+1}}-2}}$(n∈N*,),记数列{cn}的前n项和为Sn,求Sn;并求正整数k,使得对任意n∈N*,均有Sk≥Sn.
3.随机变量ξ~N(0,1),则P(1≤ξ≤2)=( )
(参考数据:P(μ-σ≤ξ≤μ+σ)=0.6286,P(μ-2σ≤ξ≤μ+2σ)=0.9544,P(μ-3σ≤ξ≤μ+σ3)=0.9974)
(参考数据:P(μ-σ≤ξ≤μ+σ)=0.6286,P(μ-2σ≤ξ≤μ+2σ)=0.9544,P(μ-3σ≤ξ≤μ+σ3)=0.9974)
A. | 0.0215 | B. | 0.1359 | C. | 0.1574 | D. | 0.2718 |
17.某印刷厂同时对从 A,B,C 三个不同厂家购入的纸张进行抽样检测,从各厂家购入纸张的数量(单位:件) 如下表所示,质检员用分层抽样的方式从这些纸张中共抽取 6 件样品进行检测.
(Ⅰ)求这 6 件样品来自 A,B,C 各厂家的数量;
(Ⅱ)若在这 6 件样品中随机抽取 2 件送往某机构进行专业检测,求这 2 件样品来自同一生产厂家的概率.
厂家 | A | B | C |
数量 | 16 | 8 | 24 |
(Ⅱ)若在这 6 件样品中随机抽取 2 件送往某机构进行专业检测,求这 2 件样品来自同一生产厂家的概率.
12.如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )
A. | {$\frac{1}{3}$,$\frac{2}{3}$} | B. | {$\frac{1}{3}$,$\frac{2}{3}$,$\frac{π}{6}$} | C. | {V|$\frac{1}{3}$≤V≤$\frac{2}{3}$} | D. | {V|0<V≤$\frac{2}{3}$} |