题目内容

某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.

 

6
9
3 6 7 9 9
9 5 1 0
8
0 1 5 6
9 9 4 4 2
7
3 4 5 8 8 8
8 8 5 1 1 0
6
0 7 7
4 3 3 2
5
2 5
 
(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
 
甲班(A方式)
乙班(B方式)
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 
 
附:,其中n=a+b+c+d.)
 P(K2≥k)
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
   k
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(1)(2)详见解析

试题分析:(1)本题是一个等可能事件的概率,试验发生包含的事件是从不低于86分的成绩中随机抽取两个包含的基本事件数,列举出结果,满足条件的事件也可以列举出结果,得到概率.
(2)根据所给的数据,列出列联表,根据列联表中的数据,做出观测值,把观测值同临界值表进行比较,得到有90%的把握认为成绩优秀与教学方式有关.
试题解析:解析 (1)设“抽出的两个均‘成绩优秀’”为事件A.
从不低于86分的成绩中随机抽取2个的基本事件为(86,93),(86,96),(86,97),(86,99),(86,99),(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共15个.
而事件A包含基本事件:
(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共10个.
所以所求概率为P(A)=.
(2)由已知数据得
 
甲班(A方式)
乙班(B方式)
总计
成绩优秀
1
5
6
成绩不优秀
19
15
34
总计
20
20
40
 
根据列联表中数据,
K2
由于3.137>2.706,所以有90%的把握认为“成绩优秀”与教学方式有关.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网