题目内容

【题目】如图,直角坐标系x′Oy所在的平面为β,直角坐标系xOy所在的平面为α,且二面角α﹣y轴﹣β的大小等于30°.已知β内的曲线C′的方程是3(x﹣2 2+4y2﹣36=0,则曲线C′在α内的射影在坐标系xOy下的曲线方程是

【答案】(x﹣3)2+y2=9
【解析】解:设3(x﹣2 2+4y2﹣36=0上的任意点为A(x,y),
A在平面α上的射影是(x,y)
∵直角坐标系x′Oy所在的平面为β,
直角坐标系xOy所在的平面为α,且二面角α﹣y轴﹣β的大小等于30°.
∴根据题意,得到x= x,y=y,
∵3(x﹣2 2+4y2﹣36=0,
∴3( x﹣2 2+4y2﹣36=0
∴(x﹣3)2+y2=9
所以答案是:(x﹣3)2+y2=9.

练习册系列答案
相关题目

【题目】阅读下面材料,尝试类比探究函数y=x2 的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象. 阅读材料:
我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.
在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.
对于函数y= ,我们可以通过表达式来研究它的图象和性质,如:

(1)在函数y= 中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.
(2)在函数y= 中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;
(3)在函数y= 中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;
(4)由函数y= 可知f(﹣x)=﹣f(x),即y= 是奇函数,可以推测出,对应的图象关于原点对称. 结合以上性质,逐步才想出函数y= 对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网