题目内容

等差数列{an} 的前n项的和为Sn,且S5=45,S6=60.
(1)求{an} 的通项公式;
(2)若数列{bn} 满足bn-bn=an-1(n∉N*),且b1=3,设数列{
1
bn
}
的前n项和为Tn.求证:Tn
3
4
分析:(1)a6=S6-S5=15,由S6=
(a1+a6)×6
2
=60,解得a1=5,再由d=
a6-a1
6-1
=2,能求出{an} 的通项公式.
(2)由b2-b1=a1,b3-b2=a2,b4-b3=a3,…,bn-bn-1=an-1,叠加得bn-b1=
(a1+an-1)(n-1)
2
=
(5+2n+1)(n-1)
2
,所以bn=n2+2n.
1
bn
=
1
n2+2n
=
1
2
[
1
n
-
1
n+2
]
,由裂项求和法能够证明Tn
3
4
解答:(1)解:a6=S6-S5=15,由S6=
(a1+a6)×6
2
=60,
解得a1=5,又∵d=
a6-a1
6-1
=2,
所以an=2n+3.…4
(2)证明:∵b2-b1=a1
b3-b2=a2
b4-b3=a3

bn-bn-1=an-1
叠加得bn-b1=
(a1+an-1)(n-1)
2
=
(5+2n+1)(n-1)
2

所以bn=n2+2n.…(9分)

1
bn
=
1
n2+2n
=
1
2
[
1
n
-
1
n+2
]

Tn=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=
1
2
(
3
2
-
1
n+1
-
1
n+2
)

=
3
4
-
1
2
(
1
n+1
+
1
n+2
)<
3
4
.…(12分)
点评:本题考查数列通项公式和数列前n项和的求法,证明Tn
3
4
.解题时要认真审题,注意等差数列通项公式的应用和裂项求和法的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网