题目内容

已知f(x+y)=f(x)+f(y),且f(1)=2,则f(1)+f(2)+…+f(n)不能等于(  )
分析:根据题意,令x=n、y=1,证出f(n+1)-f(n)=2,得{f(n)}构成以2为首项、公差为2的等差数列.由等差数列通项公式算出f(n)=2n,进而得到{f(n)}前n项和等于n(n+1).由此再将各项和运算结果加以对照,可得本题答案.
解答:解:令x=n,y=1,得f(n+1)=f(n)+f(1)=f(n)+2,
∴f(n+1)-f(n)=2,
可得{f(n)}构成以f(1)=2为首项,公差为2的等差数列,
∴f(n)=2+(n-1)×2=2n,
因此,f(1)+f(2)+…+f(n)=
n[f(1)+f(n)]
2
=
n(2+2n)
2
=n(n+1)
对于A,由于f(1)+2f(1)+3f(1)+…+nf(1)
=f(1)(1+2+…+n)=2×
n(n+1)
2
=n(n+1),故A正确;
对于B,由于f(n)=2n,所以f[
n(n+1)
2
]
=2×
n(n+1)
2
=n(n+1),得B正确;
对于C,与求出的前n项和的通项一模一样,故C正确.
对于D,由于n(n+1)f(1)=2n(n+1),故D不正确.
故选:D
点评:本题考查了等差数列的通项公式、求和公式的知识,考查了采用赋值法解决抽象函数问题的方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网