题目内容
【题目】已知函数.
(1)讨论函数f(x)的极值点的个数;
(2)若f(x)有两个极值点证明.
【答案】(1)见解析(2)见解析
【解析】
(1)求得函数的定义域和导函数,对分成三种情况进行分类讨论,判断出的极值点个数.
(2)由(1)知,结合韦达定理求得的关系式,由此化简的表达式为,通过构造函数法,结合导数证得,由此证得成立.
(1)函数的定义域为
得,
(i)当时;,
因为时,时,,
所以是函数的一个极小值点;
(ii)若时,
若,即时,,
在是减函数,无极值点.
若,即时,
有两根,
不妨设
当和时,,
当时,,
是函数的两个极值点,
综上所述时,仅有一个极值点;
时,无极值点;时,有两个极值点.
(2)由(1)知,当且仅当时,有极小值点和极大值点,且是方程的两根,
,则
所以
设,则,又,即,
所以
所以是上的单调减函数,
有两个极值点,则
【题目】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为常数且,为参数).
(1)求和的直角坐标方程;
(2)若和相交于、两点,以线段为一条边作的内接矩形,当矩形的面积取最大值时,求的值.
【题目】某手机软件研发公司为改进产品,对软件用户每天在线的时间进行调查,随机抽取40名男性与20名女性对其每天在线的时间进行了调查统计,并绘制了如图所示的条形图,其中每天的在线时间4h以上(包括4h)的用户被称为“资深用户”.
(1)根据上述样本数据,完成下面的2×2列联表,并判定是否有95%的把握认为是否为“资深用户”与性别有关;
“资深用户” | 非“资深用户” | 总计 | |
男性 | |||
女性 | |||
总计 |
(2)用样本估计总体,若从全体用户中随机抽取3人,设这3人中“资深用户”的人数为X,求随机变量X的分布列与数学期望.
附:,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【题目】某企业现有A.B两套设备生产某种产品,现从A,B两套设备生产的大量产品中各抽取了100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是从A设备抽取的样本频率分布直方图,表1是从B设备抽取的样本频数分布表.
图1:A设备生产的样本频率分布直方图
表1:B设备生产的样本频数分布表
质量指标值 | ||||||
频数 | 2 | 18 | 48 | 14 | 16 | 2 |
(1)请估计A.B设备生产的产品质量指标的平均值;
(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在内的定为一等品,每件利润240元;质量指标值落在或内的定为二等品,每件利润180元;其它的合格品定为三等品,每件利润120元.根据图1、表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.企业由于投入资金的限制,需要根据A,B两套设备生产的同一种产品每件获得利润的期望值调整生产规模,请根据以上数据,从经济效益的角度考虑企业应该对哪一套设备加大生产规模?