题目内容
已知不等式>0 (a∈R).
(1)解这个关于x的不等式;
(2)若x=-a时不等式成立,求a的取值范围.
(1)解这个关于x的不等式;
(2)若x=-a时不等式成立,求a的取值范围.
(1)a<-1时,解集为;a=-1时,原不等式无解;-1<a<0时,解集为;a=0时,解集为{x|x<-1};a>0时,解集为.
(2)a的取值范围为a>1
(2)a的取值范围为a>1
(1)原不等式等价于(ax-1)(x+1)>0.
①当a=0时,由-(x+1)>0,得x<-1;
②当a>0时,不等式化为(x+1)>0,
解得x<-1或x>;
③当a<0时,不等式化为(x+1)<0;
若<-1,即-1<a<0,则<x<-1;
若=-1,即a=-1,则不等式解集为空集;
若>-1,即a<-1,则-1<x<.
综上所述,a<-1时,解集为;a=-1时,原不等式无解;-1<a<0时,解集为;a=0时,解集为{x|x<-1};a>0时,解集为.
(2)∵x=-a时不等式成立,
∴>0,即-a+1<0,
∴a>1,即a的取值范围为a>1.
①当a=0时,由-(x+1)>0,得x<-1;
②当a>0时,不等式化为(x+1)>0,
解得x<-1或x>;
③当a<0时,不等式化为(x+1)<0;
若<-1,即-1<a<0,则<x<-1;
若=-1,即a=-1,则不等式解集为空集;
若>-1,即a<-1,则-1<x<.
综上所述,a<-1时,解集为;a=-1时,原不等式无解;-1<a<0时,解集为;a=0时,解集为{x|x<-1};a>0时,解集为.
(2)∵x=-a时不等式成立,
∴>0,即-a+1<0,
∴a>1,即a的取值范围为a>1.
练习册系列答案
相关题目