题目内容

已知双曲线的两个焦点是椭圆
x2
100
+
y2
64
=1
的两个顶点,双曲线的两条准线经过椭圆的两个焦点,则此双曲线的方程是(  )
A、
x2
60
-
y2
30
=1
B、
x2
50
-
y2
40
=1
C、
x2
60
-
y2
40
=1
D、
x2
50
-
y2
30
=1
分析:先利用条件判断出双曲线的焦点在X轴上,并得到关于c和a的两个方程,求出c和a的值即可找到双曲线的方程.
解答:解:由题意得双曲线的焦点在X轴上且c=10,
a2
c
=6?a2=60,b2=c2-a2=40,
所以双曲线的方程是
x2
60
-
y2
40
=1.
故选  C.
点评:在求双曲线的标准方程时,一定要先判断焦点所在位置,根据焦点位置和对应的c,a,b的值来写方程.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网