题目内容

(2013•许昌三模)设向量
a
=(
3
sinθ+cosθ+1,1),
b
=(1,1),θ∈[
π
3
3
],m是向量
a
 在向量
b
向上的投影,则m的最大值是(  )
分析:由条件求得 
a
b
=2sin(θ+
π
6
)+2.由题意可得m=|
a
|•cos<
a
b
>=
2sin(θ+
π
6
)+2
2
.再由θ∈[
π
3
3
],利用正弦函数的定义域和值域求得
sin(θ+
π
6
)的最大值,即可求得m的最大值.
解答:解:∵向量
a
=(
3
sinθ+cosθ+1,1)=(2sin(θ+
π
6
)+1,1),
b
=(1,1),∴
a
b
=2sin(θ+
π
6
)+2.
由题意可得m=|
a
|•cos<
a
b
>=|
a
|•
a
b
|
a
|•|
b
|
=
2sin(θ+
π
6
)+2
2

再由θ∈[
π
3
3
],可得θ+
π
6
∈[
π
2
6
],sin(θ+
π
6
)∈[
1
2
,1],故m的最大值为
2+2
2
=2
2

故选C
点评:本题主要考查两个向量的夹角公式的应用,两角和的正弦公式,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网