题目内容

【题目】已知函数f(x)=(x﹣b)lnx+x2在区间[1,e]上单调递增,则实数b的取值范围是(
A.(﹣∞,﹣3]
B.(﹣∞,2e]
C.(﹣∞,3]
D.(﹣∞,2e2+2e]

【答案】C
【解析】解:f′(x)=lnx+ +2x=lnx﹣ +1+2x, ∵f(x)在[1,e]上单调递增,∴f′(x)≥0在[1,e]上恒成立,
若b≤0,显然f′(x)>0恒成立,符合题意,
若b>0,则f′′(x)= + +2>0,
∴f′(x)在[1,e]上是增函数,
∴f′(x)≥f′(1)≥0,即﹣b+1+2≥0,解得0<b≤3,
综上,b的范围是(﹣∞,3].
故选:C.
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网