题目内容
12.已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,2cos2$\frac{A}{2}$-cos(B+C)=0(1)求角A的值
(2)若a=2$\sqrt{3}$,b+c=4,求△ABC的面积.
分析 (1)由三角函数恒等变换化简已知等式可得cosA=-$\frac{1}{2}$,结合A的范围,即可求得A的值.
(2)结合已知由余弦定理可可求得:12=16-bc,解得:bc=4,由三角形面积公式即可求解.
解答 解:(1)∵2cos2$\frac{A}{2}$-cos(B+C)=0
⇒1+cosA+cosA=0
⇒cosA=-$\frac{1}{2}$,
∵A,B,C为△ABC的三个内角,
∴A=$\frac{2π}{3}$.
(2)∵a=2$\sqrt{3}$,b+c=4,
∴由余弦定理可知:a2=12=b2+c2-2bccosA=b2+c2+bc=(b+c)2-bc=16-bc,可解得:bc=4,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
点评 本题主要考查了余弦定理,三角函数恒等变换,三角形面积公式的应用,综合性较强,属于基本知识的考查.
练习册系列答案
相关题目
3.将函数y=sin(2x-$\frac{π}{3}$)的图象向左移动$\frac{π}{3}$个单位,得到函数y=f(x)的图象,则函数y=f(x)的一个单调递增区间是( )
A. | [-$\frac{π}{4}$,$\frac{π}{4}$] | B. | [-$\frac{π}{2}$,0] | C. | [-$\frac{5π}{12}$,$\frac{π}{12}$] | D. | [$\frac{π}{12}$,$\frac{7π}{12}$] |
7.若直线2x+y-2$\sqrt{5}$=0过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,且与双曲线的一条渐近线垂直,则双曲线的方程为( )
A. | $\frac{{x}^{2}}{4}-{y}^{2}=1$ | B. | x2-$\frac{{y}^{2}}{4}=1$ | C. | $\frac{{x}^{2}}{10}-\frac{{y}^{2}}{5}=1$ | D. | $\frac{{x}^{2}}{16}-\frac{{y}^{2}}{4}=1$ |
17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}+2\overrightarrow{b}$|=( )
A. | 2 | B. | $\sqrt{10}$ | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
4.学校开展阳光体育活动,对学生的锻练时间进行随机抽样调查,从中随机抽取男、女生各25名进行了问卷调查,得到了如下列联表:
(Ⅰ) 根据上表数据求x,y,并据此资料分析:有多大的把握可以认为“锻练时间与性别有关”?
(Ⅱ) 从这50名学生中用分层抽样的方法抽取5人为样本,求从该样本中任取2人,
至少有1人锻练时间少于1小时的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
锻练时间 | 男生 | 女生 | 合计 |
少于1小时 | 5 | 15 | 20 |
不少于1小时 | 20 | 10 | 30 |
合 计 | 25 | 25 | 50 |
(Ⅱ) 从这50名学生中用分层抽样的方法抽取5人为样本,求从该样本中任取2人,
至少有1人锻练时间少于1小时的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥K0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |