题目内容
已知A、B是相互独立事件,且P(A)=,P(B)=,则P(A)=________;P()=________.
解析
为了解某校学生参加某项测试的情况,从该校学生中随机抽取了6位同学,这6位同学的成绩(分数)如茎叶图所示.⑴求这6位同学成绩的平均数和标准差;⑵从这6位同学中随机选出两位同学来分析成绩的分布情况,求这两位同学中恰有一位同学成绩低于平均分的概率.
设一随机试验的结果只有A和,且P(A)=p令随机变量X=,则X的方差V(X)等于________.
设A、B是两个事件,0<P(A)<1,P(|A)=1.则下列结论:①P(AB)=0;②P(A+)=P(A);③P()=P(B);④P(A)=P().其中正确的是________.
从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为,身体关节构造合格的概率为,从中任挑一儿童,这两项至少有一项合格的概率是________(假定体型与身体关节构造合格与否相互之间没有影响).
某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.
下列随机事件中的随机变量X服从超几何分布的是________.(填序号)①将一枚硬币连抛3次,正面向上的次数记为X;②从7男3女共10个学生干部中选出5个优秀学生干部,女生的人数记为X;③某射手的射击命中率为0.8,现对目标射击1次,记命中的次数为X;④盒中有4个白球和3个黑球,每次从中摸出1个球且不放回,X是第一次摸出黑球的次数.
已知关于x的二次函数f(x)=ax2-4bx+1.设集合P={-1,1,2,3,4,5}和Q={-2,-1,1,2,3,4},分别从集合P和Q中任取一个数作为a和b的值,则函数y=f(x)在区间[1,+∞)上是增函数的概率为________.
现有某类病毒记作XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为 .