题目内容
8.已知a、b、c是△ABC的三条边,且$\frac{sin(A-B)}{sin(A+B)}$=$\frac{2c-b}{2c}$,求cos$\frac{B+C}{2}$.分析 首先,根据三角形的内角和定理,化简所给等式,然后,结合正弦定理和余弦定理进行化简即可.
解答 解:∵A+B+C=π,
∴sin(A+B)=sin(π-C)=sinC,
∵$\frac{sin(A-B)}{sin(A+B)}$=$\frac{2c-b}{2c}$,
结合正弦定理,得
∴2acosB-2bcosA=2c-b,
根据余弦定理,得
∴2a×$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$-2b×$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=2c-b,
∴a2+c2-b2-(b2+c2-a2)=2c2-bc,
∴a2=b2+c2-$\frac{1}{2}$bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{4}$
∵$\frac{B+C}{2}=\frac{π}{2}-\frac{A}{2}$,
∴cos$\frac{B+C}{2}$=sin$\frac{A}{2}$,
=$\sqrt{\frac{1-cosA}{2}}$=$\sqrt{\frac{1-\frac{1}{4}}{2}}$=$\frac{\sqrt{6}}{4}$,
∴cos$\frac{B+C}{2}$=$\frac{\sqrt{6}}{4}$.
点评 本题重点考查了正弦定理和余弦定理、三角公式等知识,属于中档题.
练习册系列答案
相关题目
20.不等式|5x+4|<6的解集为( )
A. | {x|x>-2} | B. | {x|-2<x<$\frac{2}{5}$} | C. | {x|x<$\frac{2}{5}$} | D. | {x|x<-2或x>$\frac{2}{5}$} |