题目内容

已知相交直线l、m都在平面α内,并且都不在平面β内,若命题p:l、m中至少有一条与β相交;命题q:α与β相交,则p是q的


  1. A.
    不充分也不必要条件
  2. B.
    充分而不必要条件
  3. C.
    必要而不充分条件
  4. D.
    充分必要条件
D
分析:由题意此问题等价与判断①命题:已知相交直线l和m都在平面α内,且都不在平面β内,若l,m中至少有一条与β相交,则平面α与平面β相交和②命题:已知相交直线l和m都在平面α内,并且都不在平面β内,若α与β相交,则l,m中至少有一条与β相交这两个命题的真假;分别判断分析可得答案.
解答:由题意此问题等价与判断
①命题:已知相交直线l和m都在平面α内,且都不在平面β内,若l,m中至少有一条与β相交,则平面α与平面β相交,
②命题:已知相交直线l和m都在平面α内,并且都不在平面β内,若α与β相交,则l,m中至少有一条与β相交的真假;
对于①命题此处在证明必要性,因为平面α内两相交直线l和m至少一个与β相交,不妨假设直线l与β相交,交点为p,则p属于l同时属于β面,所以α与β有公共点,且由相交直线l和m都在平面α内,并且都不在平面β可知平面α与β必相交故①命题为真
对于②命题此处在证充分性,因为平α与β相交,且相交直线l和m都在平面α内,且都不在平面β内,若l,m都不与β相交,则l,m直线都与交线平行,在平面α内则l,m就得平行与l,m为交线矛盾,故②命题也为真.
故选D
点评:此题重点考查了平面的位置关系及判断命题时当正面不容易,则用反面,即证明问题时的反正法,和充要条件判断等价于判断两个命题的真假这种等价判断的方法
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网