题目内容
若首项为a1,公比为q(q≠1)的等比数列{an}满足
(
-qn)=
,则a1的取值范围是
lim |
n→∞ |
| ||
a1+a2 |
3 |
2 |
(0,
)∪(
,3)
3 |
2 |
3 |
2 |
(0,
)∪(
,3)
.3 |
2 |
3 |
2 |
分析:由题意可得|q|<1且 q≠0,即-1<q<1 且 q≠0,
=
,化简可得 a1=
+
q,由不等式的性质可得a1的取值范围.
a12 |
a1+a2 |
3 |
2 |
3 |
2 |
3 |
2 |
解答:解:由题意可得
=
,
qn=0.
故有-1<q<1 且 q≠0,
=
.
化简可得 a1=
+
q,故有 0<a1<3 且a1≠
,
故答案为:(0,
)∪(
,3).
lim |
n→∞ |
| ||
a1+a2 |
3 |
2 |
lim |
n→∞ |
故有-1<q<1 且 q≠0,
a12 |
a1+a2 |
3 |
2 |
化简可得 a1=
3 |
2 |
3 |
2 |
3 |
2 |
故答案为:(0,
3 |
2 |
3 |
2 |
点评:本题主要考查求数列的极限,得到-1<q<1 且 q≠0,
=
,是解题的关键.
a12 |
a1+a2 |
3 |
2 |
练习册系列答案
相关题目