题目内容
17.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,则f(2014)=log32.分析 先确定函数的周期为6,再利用f(2014)=f(6×335+4)=f(4)=-f(1),即可得出结论.
解答 解:由题意f(x+1)=f(x)-f(x-1)=-f(x-2),
所以f(x+3)=-f(x),
所以f(x+6)=f(x),即函数的周期为6(x>0),f(0)=0,
所以f(2014)=f(6×335+4)=f(4)=f(3)-f(2)=[f(2)-f(1)]-[f(1)-f(0)]=f(2)-2f(1)=f(1)-f(0)-2[f(0)-f(-1)]=f(0)-f(-1)+2f(-1)=f(-1)=log32,
所以f(2014)=log32.
故答案为:log32.
点评 本题考查函数的周期性,考查学生的计算能力,确定函数的周期是关键.
练习册系列答案
相关题目
7.已知一个棱锥的三视图如下,根据图中标出的尺寸(单位:cm),可得这个棱锥的侧面积是( )
A. | 4cm2 | B. | 12cm2 | C. | 8+4$\sqrt{2}$cm2 | D. | 4+4$\sqrt{2}$+2$\sqrt{3}$cm2 |
12.已知函数f(x)=$\left\{\begin{array}{l}{-lnx,0<x≤e}\\{a(x+e),x>e}\end{array}\right.$是(0,+∞)上的减函数,且对任意m∈(0,e],n∈(e,+∞)有f($\frac{m+n}{2}$)$<\frac{1}{2}$[f(m)+f(n)],那么实数a的取值范围是( )
A. | a<-$\frac{1}{e}$ | B. | a$≤-\frac{1}{2e}$ | C. | -1≤a<0 | D. | -$\frac{1}{e}$<a≤-$\frac{1}{2e}$ |