题目内容
过点作圆的两切线,设两切点为、,圆心为,则过、、的圆方程是
A、 B、
C、 D、
A
已知圆的方程为,过点作圆的两条切线,切点分别为、,直线恰好经过椭圆的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆(垂直于轴的一条弦,所在直线的方程为且是椭圆上异于、的任意一点,直线、分别交定直线于两点、,求证.
(本题满分15分) 设点为圆上的动点,过点作轴的垂线,垂足为.动点满足(其中,不重合).
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过直线上的动点作圆的两条切线,设切点分别为.若直线与(Ⅰ)中的曲线交于两点,求的取值范围.
(本题满分14分)设抛物线的方程为,为直线上任意一点,过点作抛物线的两条切线,切点分别为,.
(1)当的坐标为时,求过三点的圆的方程,并判断直线与此圆的位置关系;
(2)求证:直线恒过定点.
已知圆的方程为,过点作圆的两条切线,切点分别为、,直线恰好经过椭圆:的右顶点和上顶点.
(1)求直线的方程及椭圆的方程;
(2)椭圆以的长轴为短轴,且与有相同的离心率,求椭圆的方程;
(3)设O为坐标原点,点A,B分别在椭圆和上,,求直线的方程.