题目内容
【题目】如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.
(1)求证:DC是⊙O的切线;
(2)求证:AMMB=DFDA.
【答案】
(1)证明:连接OC,∵OA=OC
∴∠OAC=∠OCA,
∵CA是∠BAF的角平分线,
∴∠OAC=∠FAC
∴∠FAC=∠OCA,
∴OC∥AD.
∵CD⊥AF,
∴CD⊥OC,即DC是⊙O的切线.
(2)证明:连接BC,在Rt△ACB中,CM⊥AB,∴CM2=AMMB.
又∵DC是⊙O的切线,∴DC2=DFDA.
∵∠MAC=∠DAC,∠D=∠AMC,AC=AC
∴△AMC≌△ADC,∴DC=CM,
∴AMMB=DFDA
【解析】(1)证明DC是⊙O的切线,就是要证明CD⊥OC,根据CD⊥AF,我们只要证明OC∥AD;(2)首先,我们可以利用射影定理得到CM2=AMMB,再利用切割线定理得到DC2=DFDA,根据证明的结论,只要证明DC=CM.
练习册系列答案
相关题目