题目内容

已知
i
j
分别是与x轴,y轴正方向相同的单位向量,
OB1
=a
i
-6
j
(a∈R),对任意正整数n,
BnBn+1
=6
i
+3•2n-1
j

(1)若
OB1
B2B3
,求a的值;
(2)求向量
OB3

(3)求向量
OBn
(用n、a表示)
分析:可得
OB1
=(a,-6)
BnBn+1
=(6,3•2n-1);
(1)由题意可得
OB1
B2B3
=0,解方程即可;
(2)
OB3
=
OB1
+
B1B2
+
B2B3
,代入运算可得;
(3)
OBn
=
OB1
+
B1B2
+
B2B3
+…+
Bn-1Bn
=(a,-6)+(6,3)+(6,6)+…+(6,3•2n-2),由等比数列的求和公式化简可得.
解答:解:由题意可得
OB1
=(a,-6)
BnBn+1
=(6,3•2n-1),
(1)可得
B2B3
=(6,3•22-1)=(6,6),
OB1
B2B3
可得
OB1
B2B3
=6a-36=0,解得a=6;
(2)
OB3
=
OB1
+
B1B2
+
B2B3
=(a,-6)+(6,3)+(6,6)=(a+12,3);
(3)同(2)可得
OBn
=
OB1
+
B1B2
+
B2B3
+…+
Bn-1Bn

=(a,-6)+(6,3)+(6,6)+…+(6,3•2n-2
=(a+6n-6,-6+3•20+3•21+…+3•2n-2
=(a+6n-6,-6+3•
1-2n-1
1-2

=(a+6n-6,3•2n-1-9)
点评:本题考查向量的加减的运算,涉及数量积和等比数列的求和公式,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网