题目内容

已知函数f(x)=
lnxx

(1)求函数f(x)的单调区间;
(2)设a>0,求函数f(x)在[2a,4a]上的最小值;
(3)某同学发现:总存在正实数a、b(a<b),使ab=ba,试问:他的判断是否正确?若不正确,请说明理由;若正确,请直接写出a的取值范围(不需要解答过程).
分析:(1)先确定函数的定义域,再利用导数,可求函数f(x)的单调区间;
(2)根据f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,结合函数的定义域,分类讨论,可求函数f(x)在[2a,4a]上的最小值;
(3)a的取值范围是1<a<e,利用f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,即可求得.
解答:解:(1)定义域为(0,+∞),f′(x)=
1-lnx
x2

f′(x)=
1-lnx
x2
=0
,则x=e,
当x变化时,f'(x),f(x)的变化情况如下表:
x (0,e) e (e,+∞)
f'(x) + 0 -
f(x)
1
e
∴f(x)的单调增区间为(0,e);单调减区间为(e,+∞).…(4分)
(2)由(1)知f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,所以,
当4a≤e时,即a≤
e
4
时,f(x)在[2a,4a]上单调递增,∴f(x)min=f(2a);
当2a≥e时,f(x)在[2a,4a]上单调递减,∴f(x)min=f(4a)
当2a<e<4a时,即
e
4
<a<
e
2
时,f(x)在[2a,e]上单调递增,f(x)在[e,4a]上单调递减,
∴f(x)min=min{f(2a),f(4a)}.
下面比较f(2a),f(4a)的大小,…(8分)
f(2a)-f(4a)=
lna
4a

∴若
e
4
<a≤1
,则f(a)-f(2a)≤0,此时f(x)min=f(2a)=
ln2a
2a

1<a<
e
2
,则f(a)-f(2a)>0,此时f(x)min=f(4a)=
ln4a
4a
;…(10分)
综上得:
当0<a≤1时,f(x)min=f(2a)=
ln2a
2a

当a>1时,f(x)min=f(4a)=
ln4a
4a
,…(12分)
(3)正确,a的取值范围是1<a<e                           …(16分)
理由如下,考虑几何意义,即斜率,当x→+∞时,f(x)→0
又∵f(x)在(0,e)上单调递增,在(e,+∞)上单调递减
∴f(x)的大致图象如右图所示
∴总存在正实数a,b且1<a<e<b,使得f(a)=f(b),即
lna
a
=
lnb
b
,即ab=ba
点评:本题重点考查导数的运用,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,有一定的综合性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网