题目内容
已知x2 = a2 + b2,y2 = c2 + d2,且所有字母均为正,求证:xy≥ac + bd
同解析。
∵a, b, c, d, x, y都是正数 ∴要证:xy≥ac + bd
只需证:(xy)2≥(ac + bd)2 即:(a2 + b2)(c2 + d2)≥a2c2 + b2d2 + 2abcd
展开得:a2c2 + b2d2 + a2d2 + b2c2≥a2c2 + b2d2 + 2abcd
即:a2d2 + b2c2≥2abcd 由基本不等式,显然成立
∴xy≥ac + bd
只需证:(xy)2≥(ac + bd)2 即:(a2 + b2)(c2 + d2)≥a2c2 + b2d2 + 2abcd
展开得:a2c2 + b2d2 + a2d2 + b2c2≥a2c2 + b2d2 + 2abcd
即:a2d2 + b2c2≥2abcd 由基本不等式,显然成立
∴xy≥ac + bd
练习册系列答案
相关题目