题目内容
已知函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_ST/1.png)
(1)求ω,φ的值;
(2)若将函数g(x)的图象向左平移
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_ST/4.png)
(3)画出函数f(x)长度为一个周期的闭区间上的简图.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_ST/images5.png)
【答案】分析:(1)由周期求得ω=2,由对称轴方程求得φ=kπ+
,k∈z.再结合
可得φ=
.
(2)根据可得函数g(x)=3sin[
(x-
)+
]=3sin(
x+
)的图象,
当
,有-
≤
+
≤
,故-
≤sin(
+
)≤1,故-
≤sin(
+
)≤3,
g(x)的最大值为3,最小值.
(3)用五点法作图,画出函数f(x)长度为一个周期的闭区间上的简图.
解答:解:(1)由题意可得
=π,∴ω=2,且 2×
+φ=kπ+
,∴φ=kπ+
,k∈z.
再结合
可得φ=
.
(2)由题意利用函数y=Asin(ωx+φ)的图象变换规律可得函数g(x)=3sin(
x+
),由
,利用正弦函数的定义域和值域求得
g(x)的最大值和最小值.
(3)如图:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/images28.png)
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,用五点法作函数y=Asin(ωx+φ)在一个周期上的简图,
正弦函数的定义域和值域,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/2.png)
(2)根据可得函数g(x)=3sin[
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/7.png)
当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/18.png)
g(x)的最大值为3,最小值.
(3)用五点法作图,画出函数f(x)长度为一个周期的闭区间上的简图.
解答:解:(1)由题意可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/22.png)
再结合
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/24.png)
(2)由题意利用函数y=Asin(ωx+φ)的图象变换规律可得函数g(x)=3sin(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/27.png)
g(x)的最大值和最小值.
(3)如图:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173437580025394/SYS201311031734375800253019_DA/images28.png)
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,用五点法作函数y=Asin(ωx+φ)在一个周期上的简图,
正弦函数的定义域和值域,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目