题目内容
已知函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_ST/0.png)
(I)求函数f(x)的对称轴方程;
(II)若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_ST/2.png)
【答案】分析:(I)利用查两角和差的正弦、余弦公式化简函数f(x)的解析式为2cos(ωx+
),根据函数的周期为 2π,求得ω=1,可得f(x)=2cos( x+
).由x+
=kπ+
,k∈z,求得x的值,即得对称轴方程.
(II)由
,可得 cos(θ+
)=
,再利用二倍角公式求得
的值.
解答:解:(I)∵
=cosωxcos
-sinωxsin
+cosωxcos
+sinωxsin
-sinωx
=
cosωx-sinωx=2cos(ωx+
).
函数
的最小正周期等于2π,
∴
=2π,∴ω=1,可得f(x)=2cos( x+
).
由x+
=kπ+
,k∈z,求得对称轴方程为 x=kπ+
,k∈z.
(II)由
,可得 cos(θ+
)=
,
∴
=2
-1=-
.
点评:本题主要考查本题主要考查两角和差的正弦、余弦公式的应用,二倍角公式,三角函数的周期性,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/3.png)
(II)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/7.png)
解答:解:(I)∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/8.png)
=cosωxcos
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/12.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/14.png)
函数
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/15.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/17.png)
由x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/20.png)
(II)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/23.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103103404483073128/SYS201311031034044830731016_DA/26.png)
点评:本题主要考查本题主要考查两角和差的正弦、余弦公式的应用,二倍角公式,三角函数的周期性,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目