题目内容

已知直线l:2x+y+2=0及圆C:x2+y2=2y.
(1)求垂直于直线l且与圆C相切的直线l′的方程;
(2)过直线l上的动点P作圆C的一条切线,设切点为T,求|PT|的最小值.
(1)x-2y+2±=0
(2)
(1)圆C的方程为x2+(y-1)2=1,其圆心为C(0,1),半径r=1.
由题意可设直线l′的方程为x-2y+m=0.
由直线与圆相切可得C到直线l′的距离d=r,即=1,解得m=2±.
故直线l′的方程为x-2y+2±=0.
(2)结合图形可知:|PT|=.故当|PC|最小时,|PT|有最小值.
易知当PC⊥l时,|PC|取得最小值,且最小值即为C到直线l的距离,得|PC|min.
所以|PT|min.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网