题目内容

已知z,ω为复数,i为虚数单位,(1+3i)•z为纯虚数,ω=
z
2+i
,且|ω|=5
2
,则复数ω=
±(7-i)
±(7-i)
分析:设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a-3b+(3a+b)i为纯虚数,可得
a-3b=0
3a+b≠0

又ω=
2a+b
5
+
2b-a
5
i
,|ω|=5
2
,可得
(
2a+b
5
)2+(
2b-a
5
)2
=5
2
.即可得出a,b.
解答:解:设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a-3b+(3a+b)i为纯虚数,∴
a-3b=0
3a+b≠0

又ω=
z
2+i
=
(a+bi)(2-i)
(2+i)(2-i)
=
2a+b+(2b-a)i
5
=
2a+b
5
+
2b-a
5
i
,|ω|=5
2
,∴
(
2a+b
5
)2+(
2b-a
5
)2
=5
2

把a=3b代入化为b2=25,解得b=±5,∴a=±15.
∴ω=±(
2×15+5
5
+
10-15
5
i)
=±(7-i).
故答案为±(7-i).
点评:熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网