题目内容
如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD为正方形,F为AB上一点.该四棱锥的正视图和侧视图如图所示,则四面体P-BFC的体积是________.
解析
一个几何体的三视图如图所示,则该几何体的体积是
在三棱锥中,,,,二面角的余弦值是,若都在同一球面上,则该球的表面积是 .
棱长为1的正方体的八个顶点都在同一个球面上,则此球的表面积为 .
一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是π,那么这个三棱柱的体积是________.
二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=πr3,观察发现V′=S.则由四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W=________.
正四棱锥S-ABCD的底面边长为2,高为2,E是边BC的中点,动点P在棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为________.
在正方体ABCD-A1B1C1D1中,M,N分别是棱CD,CC1的中点,则异面直线A1M与DN所成的角的大小是________
某几何体的三视图如图所示,则该几何体的体积是________.