题目内容

方程(a2+1)x2-2ax-3=0的两根x1,x2满足|x2|<x1(1-x2)且0<x1<1,则实数a的取值范围是(  )
A、(1,
3
B、(1+
3
,+∞)
C、(-
3
2
,1-
3
)∪(1+
3
,+∞)
D、(-
3
2
,+∞)
分析:根据方程根的个数与判别式之间的关系证明△>0恒成立,由题意判断出另一个根的范围,再由f(1)>0求出a的范围,利用f(0)<0进一步确定两个根的关系,再由韦达定理求出a范围,再取交集.
解答:解:∵|x2|<x1(1-x2),∴x1(1-x2)>0,又∵0<x1<1,∴x2<1
设f(x)=(a2+1)x2-2ax-3,∵方程有两根,∴△=4a2+12(a2+1)>0恒成立,
则f(1)=a2-2a-2>0,解得a>1+
3
或a<1-
3

∵f(0)=-3,∴x2<0<x1<1,
则|x2|<x1(1-x2)可化简为:x1+x2>x1x2,利用韦达定理得
2a
a2+1
>-
3
a2+1

解得a>-
3
2

∴实数a的取值范围是:(-
3
2
,1-
3
)∪(1+
3
,+∞)
故选C.
点评:本题考查了一元二次方程的解法,对于含有参数的方程,借助于判别式的符号以及韦达定理、根的范围对应的函数值的符号,进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网