题目内容
在极坐标系中,曲线与的交点到极点的距离为_________.
如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,.管理部门欲在该地从M到D修建小路:在上选一点P(异于M、N两点),过点P修建与BC平行的小路PQ.
(1)若,求的长度;
(2)当点P选择在何处时,才能使得修建的小路与PQ及QD的总长最小?并说明理由.
选修4-5:不等式选讲
已知使不等式成立.
(1)求满足条件的实数的取值集合;
(2)若,对,不等式恒成立,求的最小值.
已知,给出下列四个结论:
①②③④
其中正确结论的序号是( )
A.①② B.②③ C.②④ D.③④
若不等式在上恒成立,则实数的取值范围为_________.
已知定义在上的函数,满足,且.
(1) 求实数的值 ;
(2)若函数,求的值域.
已知函数是定义在上的偶函数,若方程的零点分别为,则( )
A. B.
C. D.
如图,是圆的直径,弦的延长线相交于点垂直的延长线于点.求证:
已知圆C1:与y轴交于O,A两点,圆C2过O,A两点,且直线C2O恰与圆C1相切;
(1)求圆C2的方程。
(2)若圆C2上一动点M,直线MO与圆C1的另一交点为N,在平面内是否存在定点P使得PM=PN始终成立,若存在,求出定点坐标,若不存在,说明理由。